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ABSTRACT
Social recommendation has been playing an important role in sug-

gesting items to users through utilizing information from social

connections. However, most existing approaches do not consider

the attention factor causing the constraint that people can only ac-

cept a limited amount of information due to the limited strength of

mind, which has been discovered as an intrinsic physiological prop-

erty of human by social science. We address this issue by resorting

to the concept of limited attention in social science and combining

it with machine learning techniques in an elegant way. When in-

troducing the idea of limited attention into social recommendation,

two challenges that fail to be solved by existing methods appear: i)

how to develop a mathematical model which can optimally choose

a subset of friends for each user such that these friends’ preferences

can best influence the target user, and ii) how can the model learn

an optimal attention for each of these selected friends. To tackle

these challenges, we first propose to formulate the problem of opti-

mal limited attention in social recommendation. We then develop a

novel algorithm through employing an EM-style strategy to jointly

optimize users’ latent preferences, optimal number of their best

influential friends and the corresponding attentions. We also give

a rigorous proof to guarantee the algorithm’s optimality. The pro-

posed model is capable of efficiently finding an optimal number

of friends whose preferences have the best impact on target user

as well as adaptively learning an optimal personalized attention

towards every selected friend w.r.t. the best recommendation accu-

racy. Extensive experiments on real- world datasets demonstrate

the superiority of our proposed model over several state-of-the-art

algorithms.

CCS CONCEPTS
• Information systems → Social recommendation.
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1 INTRODUCTION
Being capable of efficiently filtering the exploding information on

Internet, recommender systems have become an indispensable tool

in recommending relevant items that may potentially be attrac-

tive to users. As a hot research topic, recommendation with no

doubt has received a lot of attention from both academy and indus-

try [1, 28]. Nevertheless, traditional recommender systems suffer

from data sparsity which is caused by the fact that the number

of items is normally very huge while users commonly consume

only a very small portion of these items. In addition, traditional

recommendation approaches have a deteriorative performance on

new users without any historical behaviours, resulting in the cold
start problem. This brings the idea of social recommendation which

utilizes social information from social connections (such as friends)

to mitigate the above two problems [11, 19].

Although there have been a lot of works on social recommenda-

tion, most of them ignore the attention factor which results in the

constraint that only a small portion of information can be processed

in real time by each individual due to her limited mind strength

and brain capacity [13, 27]. Recent works [4, 8, 10, 37] have also

confirmed the important role this factor plays in affecting people’s

behaviours and their interactions in social media. Actually people

now with online social networks are easier to get connected, espe-

cially for those who are not close enough to become friends off-line,

causing the fact that many of our friends on social networks may

produce noisy/useless information. This being the case, bringing

the concept of attention factor into social recommendation becomes

very necessary. The only two works [14, 15] considering the at-

tention factor in recommendation simply assign non-zero weights

to all social connections. On the one hand, this fails to simulate

the real-world scenario where people only take information from

a small number of friends into consideration and ignore useless

information produced by all other friends who have noisy influence

on the target user. On the other hand, aggregation of preferences

from all social connections is computationally expensive and time-

consuming when making recommendation to users (especially for

those who have a huge number of connections). Overall, none of

existing works in social recommendation could handle the problem

related to attention factor appropriately or efficiently.

To address the above problem in social recommendation, we

borrow the idea of limited attention, a well-documented psycho-

logical and cognitive concept from social science that can affect

user behaviours. The insights from social science and computer

science inspire us to incorporate the notion of limited attention into

social recommendation in a more appropriate and efficient way,

considering that people may only take information from a limited
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number of their social connections into account. That is to say, each

individual should be influenced by only a limited number of her

social connections and thus her preference should also depend only

on the preferences of these social connections. Besides, it is shown

that social connections normally receive non-uniform distributed

attentions from the target user and thus have different influence

on her [7].

Therefore, two challenges exist: i) How can we develop an al-

gorithm capable of filtering out an optimal group of friends for

each user such that these friends’ preferences can best influence the

target user and ii) How to learn an optimal personalized attention

towards each of these selected friends for every target user. Obvi-

ously none of previous works are able to resolve the first challenge.

One naive way of implementing such subset selection on the set of

friends may be to find the distance between users and their friends,

then fill up the set of useful friends by adding friends sequentially in

order beginning from the closest one first, imposing a threshold at a

level where, say, the distance is equivalent to the distance to people

that are not explicit friends. This seems to be quite straightforward

and intuitive, but how to calculate the distance between users may

have a significant influence on the selection outcome and there are

too many of them (PCC, Cosine, etc.) that we can choose. More

importantly, some commonly adopted distance calculation metric

such as PCC even fails to optimally capture the similarities between

two users (discussed in Section 3.2). As for the second challenge,

existing work [20] calculates the weight for each friend through the

Pearson Correlation Coefficient (PCC) between her and the target

user, which is suboptimal because PCC is static and independent

of user latent feature vectors (more details will be discussed in

Section 3.2).

To handle these two challenges, we elegantly combine social

science concepts with machine learning techniques and formulate

the problem of optimal limited attention in the context of social

recommendation. We then propose a novel social recommendation

model capable of i) selecting an optimal number of social connec-

tions for each individual efficiently such that the preferences of

these chosen friends are able to best influence the target user, and

ii) learning the optimal attentions from the target user towards

these chosen friends adaptively as well. To be more concrete, we

first employ latent feature factors obtained through matrix factor-

ization to express the latent user and item preferences. Then we

develop a novel algorithm to simultaneously learn the optimal num-

ber of influential social connections, their corresponding optimal

attentions from each target individual and other model parameters

including the latent feature vector for each user and each item. The

proposed algorithm has an advantage in a joint optimization of

finding the ‘optimal’ combination of influential social connections

and the corresponding attentions as well as other parameters rather

than a two-stage procedure. Experiments on real-world datasets

demonstrate the improvement of our proposed model against state-

of-the-art approaches.

To recapitulate, the highlight of this paper is that inspired by the

sociological discoveries, we develop a model which combines so-

cial science concepts and mathematical formulations in an elegant

way. We address the challenges raised in social science by means of

machine learning techniques in the context of social recommenda-

tion. We believe our elegant combination of machine learning with

social science can help to achieve a performance boost in terms of

social recommendation accuracy. The contributions of this paper

are summarized as follows.

• Motivated by the challenges discovered in social science,

we propose to combine machine learning techniques with

social science concepts, and formulate the problem of optimal
limited attention in social recommendation.

• We develop a novel algorithm that is able to pick up a group

of social connections (friends) for each individual efficiently

such that the preferences of these chosen friends can best in-

fluence the target user, and then learn the optimal attentions

from the target user towards these chosen friends adaptively

with respect to the best recommendation accuracy.

• We show the optimality of our proposed model in selecting

the optimal number of social connections as well as adap-

tively learning the attentions.

• We conduct extensive experiments on real-world datasets to

show that our proposed algorithm can clearly beat existing

approaches in various evaluation metrics.

2 RELATEDWORK

Collaborative Filtering. Being capable of predicting user prefer-

ences through uncovering complex and unexpected patterns hidden

in users’ past behaviours without any domain knowledge, collab-

orative filtering has become one of the most popular methods in

recommender systems. Collaborative filtering methods generally

can be classified into memory-based methods and model-based

methods [31]. Memory-based approach can be further categorized

as user-based and item-based approaches, according to which of

similar users and similar items will be taken into account. User-

based methods predict an unknown rating from a target user on a

target item through calculating the weighted average of all the rat-

ings on the target item from users similar to the target user, while

item-based methods obtain the rating from a target user on a target

item via computing the average ratings by the same user on items

similar to the target item. In contrast to the memory-based meth-

ods, model-based approaches operate the observed ratings scores

with the help of machine learning techniques to train a predefined

learning model which will later be used to predict unknown ratings.

Matrix factorization, as one of the most widely used model-based

collaborative filtering methods, has achieved a promising success in

both academia and industry [16, 33]. Among the literature of matrix

factorization, Salakhutdinov and Mnih [23] propose a probabilistic

version of matrix factorization whose time complexity is linear in

the number of observations and is more resistant the overfitting

problem. We refer readers to a general treatment [17] for detailed

introduction on matrix factorization in recommendation. Recent

works on collaborative filtering [23, 26, 29, 30] take notice of the

fact that only a small number of factors are important (sparseness)

and one user’s preference vector is determined by how each factor

applies to that user. Therefore, these methods focus on factorizing

the user-item rating matrix with low-rank representations which

will then be utilized to make further predictions.
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Social Recommendation. Since users become connected through

online social networks, their preferences are no longer indepen-

dently and identically distributed. Therefore, correlated relation-

ships among connected users that provide social information have

drawn more and more interests from researchers [36]. For instance,

Weng et al. [38] find that users with social connections are more

likely to share similar interests in various topics than two randomly

chosen users, and Tang et al. [32] show that users with trust rela-

tions are more likely to have similar preferences in item ratings.

These phenomena can be observed in most online social networks

and explained by social influence [21] as well as homophily [22]

in social correlation theories. This motivates the advent of social

recommendation [3, 5, 9, 12, 18, 20, 24, 25, 39–45]. Particularly,

Ma et al. [19] propose a probabilistic matrix factorization model

through factorizing user-item rating matrix and user-user linkage

matrix simultaneously. Later another matrix factorization model

aggregating a user’s own rating and her friends’ ratings to predict

the target user’s final rating on an item is introduced by them as

well [18]. Jamali and Ester [12] formulate another matrix factor-

ization model based on the assumption that users’ latent feature

vectors are dependent on their social ties’. There also exist several

works trying to incorporate the concept of strong and weak ties

into social recommendation. Wang et al. [35] integrate the concepts

of strong and weak ties documented in social science into social

recommendation through presenting a more fine-grained catego-

rization of user-item feedback for Bayesian Personalized Ranking

by leveraging the knowledge of tie strength and tie types. They

later enable the learning of personalized tie type preference for

each individual in probabilistic matrix factorization [34].

Limited Attention. Limited attention is a concept widely dis-

cussed in social science [13, 27] and Kang et al. [14, 15] are the

first to consider it in recommendation. However, they simply as-

sign non-zero attentions (weights) to all social connections (friends),

failing to simulate the real-world scenario where people with lim-

ited attention only take information from a small number of friends

into consideration and ignore useless information produced by all

other friends who have noisy influence on the target user. Moreover,

aggregation of preferences from all social connections is compu-

tationally expensive and time-consuming when making recom-

mendation to users (especially those who have a huge number of

social connections). Our proposed optimal limited attention social

recommendation model in this paper overcomes previous works’

disadvantages through finding an optimal subset of best influential

friends for each individual and calculating the optimal correspond-

ing attentions for these selected friends.

3 SOCIAL RECOMMENDATION WITH
OPTIMAL LIMITED ATTENTION

In this section, we first give a problem definition on the application

of matrix factorization in recommendation as prior knowledge.

We then define the problem of optimal limited attention in which

limited attention is elegantly brought to social recommendation.

Finally, we detailedly explain our proposed LA-Rec model which

incorporates the concept of optimal limited attention into social

recommendation.

3.1 Problem Definition
In recommender systems, we are given a set of users U and a set

of items I, as well as a |U | × |I | rating matrix R whose non-empty

(observed) entries Ri j represent the feedbacks (e.g., ratings, clicks
etc.) of user i ∈ U for item j ∈ I. When it comes to social recom-

mendation, another |U | × |U | social tie matrix T whose non-empty

entries Tiu denote i ∈ U and u ∈ U are ties, may also be necessary.

The task is to predict the missing values in R, i.e., given a user u ∈ U
and an item p ∈ I for which Rup is unknown, we predict the rating

of u for p using observed values in R and T (if available).

A matrix factorization model assumes the rating matrix R can

be approximated by a multiplication of d-rank factors,

R ≈ UTV , (1)

whereU ∈ Rd×|U| and V ∈ Rd×|I| . Normally d is far less than both

|U | and |I |. Thus given a user i and an item j , the rating Ri j of i
for j can be approximated by the dot product of user latent feature

vector Ui and item latent feature Vj ,

Ri j ≈ UT
i Vj , (2)

where Ui ∈ Rd×1 is the ith column of U and Vj ∈ Rd×1 is the j
th

column of V . For ease of notation, we let |U | = M and |I | = N in the

remaining of the paper.

3.2 Considering Optimal Limited Attention
We define the optimal limited attention problem in Problem 1.

Problem 1. Optimal Limited Attention (OLA)
Given a set of users, their social linkage information, a set of items

as well as a subset of user-item ratings as input in the context of

social recommendation, for each user select an optimal subset of

her friends such that these friends’ preferences can best influence

this user and learn an optimal attention for each of these selected

friends.

Existing social recommendation models either simply treat dif-

ferent social connections equally or employ Pearson Correlation

Coefficient (PCC) to calculate similarities between users. On the one

hand, giving each social connection equal attention is not optimal

because of the non-uniform distributions among friendships [7].

On the other hand, the calculation of PPC between two users i and
f is based on those common items that these two users both rate,

as is shown in (3).

S (i , f ) =

∑
j∈I (i )∩I (f )

(Ri j − Ri )(Rf j − Rf )√ ∑
j∈I (i )∩I (f )

(Ri j − Ri )2
√ ∑

j∈I (i )∩I (f )
(Rf j − Rf )

, (3)

where I (·) denotes the set of items rated by the corresponding

user and R denotes the average rating score of the corresponding

user.We give an instance inwhich PCC fails to optimally capture the

similarities between two users as follows. Suppose user i and u have

exactly the same latent feature vector (0, 0, 0, 0.9, 0.1, 0, 3), and item

j and k also have the same latent feature vector (0, 0, 0, 0.5, 4, 0, 0.2).
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Let us consider the scenario where i only rates j and u only rates

k . The PCC similarity between user i and u is apparently 0, which

is reasonable according to the definition of PCC but obviously not

realistic. Furthermore, we can also observe from (3) that PCC is

static and independent of user latent feature vectors. Therefore,

applying PCC similarity to the calculation of attentions between

users will result in a suboptimal result.

As a conclusion, all the existing approaches fail to solve the

optimal limited attention problem.

3.3 OLA-Rec: Social Recommendation with
Optimal Limited Attention

To solve Problem 1, we propose a novel algorithm OLA-Rec which

is capable of finding an optimal number of best influential friends

and their corresponding attentions from each target user. We begin

by introducing a new d × 1 vector ϕi for each user i , such that

ϕi =
∑

u∈F (i )
αiuUu , (4)

where F (i) is the set of user i ’s friends and αiu is the attention

from i to u . We further constrain αiu ≥ 0 and

∑|F (i )|
u=1 αiu = 1 so that

all variables are in a comparable magnitude. We denote ϕi as the
social factor which is an aggregation of the influence of user i ’s
friends, weighted by attentions (αi ·) from i . Larger αiu indicates

user u receives more attention from user i and has more impact

on i . Similarly, smaller αiu means user u receives less attention

from user i and is less important in influencing i . We minimize the

absolute difference between ϕi and αiuUu so that they are close to

each other:

min

α i
|
∑

u∈F (i )
αiuUu − ϕi |. (5)

As we discussed, the challenge in Problem 1 is to find an optimal

number of best influential friends for each individual and learn the

optimal attention for them with respect to the best recommenda-

tion accuracy. We start to tackle this challenge by considering the

following inequality based on (5):

|
∑

u∈F (i )
αiuUu − ϕi | = |

∑
u∈F (i )

αiu (Uu − ϕu + ϕu ) − ϕi |

≤ |
∑

u∈F (i )
αiu (Uu − ϕu ) | + |

∑
u∈F (i )

αiu (ϕu − ϕi ) |

≤ |
∑

u∈F (i )
αiuϵu | + L

∑
u∈F (i )

αiud (Uu ,Ui ), (6)

where L is the Lipschitz constant of ϕi given its Lipschitz con-

tinuity and d (·, ·) is a preset distance function (Euclidean distance

in this paper). By Hoeffding’s inequality, with probability at least

1 − δ , we have :

|
∑

j∈F (i )
αi jϵj | ≤ C ∥α i ∥2, s .t . C = b ×

√
2loд(

2

δ
), (7)

whose proof will be given in Appendix B. Here we assume that

|ϵj | ≤ b for some given b > 0 to bound ϵ . In addition, it is also

assumed that {ϵi }ni=1 are independent so that we are able to apply

Hoeffding’s inequality and bound the so-called variance. The as-

sumption of Lipschitz continuous function, on the other hand, is

required to bound the so-called bias term. Thus there comes another

optimization problem from (6) such that solving it could obtain a

guarantee for (5) with high probability:

minα i C ∥α i ∥2 + L
∑
u∈F (i ) αiud (Uu ,Ui ), or

minα i C( ∥α i ∥2 + αT
i β i ), (8)

where β i ∈ R
|F (i )|

such that:

βiu = L · d (Uu ,Ui )/C , (9)

and user i ’s friends u ∈ F (i) are assumed to be in an ascending

order with respect to d (Uu ,Ui ). In fact, we only need to set the

value of LC ratio which equals to L/C in (9) rather than setting ϵ
and b during practical implementation. We will discuss the impact

of LC ratio later in the experimental section. LC ratio indirectly de-

termines the attention weights α and the value of optimal k∗ which
will in turn influence the selected subsets of social connections.

Therefore, we test different settings of LC ratio and examine the

corresponding effects on the performances in later experiments.

Inspired by Anava’s work [2], we come out with the following

theorem and corollary:

Theorem 3.1. The optimal α i of (8) for each user i , denoted as
α ∗i , can be written in the following form:

α ∗iu =
(λ − βiu )∑|F (i )|

u (λ − βiu )
, (10)

where we require βiu < λ for some λ > 0 in (10).

Proof. Consider the alternative expression in (8), i.e.,minα i C( ∥α i ∥2+

αT
i β ), by ignoring C and introducing the Lagrange Multipliers, we

have:

L(α i , λ, θ i ) = ∥α i ∥2 + α
T
i β + λ(1 −

|F (i )|∑
u=1

αiu ) −
|F (i )|∑
u=1

θiuαiu .

Given the convexity of (8), a global optimum is guaranteed for

any solution satisfying the KKT conditions. Take the partial deriva-

tive of Lagrangian with respect to α i , set it to 0:

∂L
∂αiu

= αiu − ∥α i ∥2 × (λ − βiu + θiu ) = 0,

αiu
∥α i ∥2

= λ − βiu + θiu , (11)

where ∀αiu > 0, θiu = 0 (i.e., βiu < λ) and ∀αiu = 0, θiu ≥ 0

(i.e., βiu ≥ λ) by KKT conditions. Thus for any optimal attention

α ∗iu > 0, we have:

α ∗iu
∥α ∗i ∥2

= λ − βiu . (12)

Further combining (12) with the constraint that

∑|F (i )|
u=1 αiu = 1,

any α ∗iu > 0 can be calculated as follows:
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α ∗iu =
λ − βiu∑

αiu >0
(λ − βiu )

, (13)

which completes the proof. �

A direct statement from Theorem 3.1 is as follows.

Corollary 3.2. There exists 1 ≤ k∗i ≤ |F (i) | whose relation to α ∗i
in Theorem 3.1 is as follows: ∀u > k∗i , α

∗
iu = 0 and ∀u ≤ k∗i , α

∗
iu > 0.

Theorem 3.1 and Corollary 3.2 confirm the existence of optimal

solution for Problem 1, which is that for each target user i , k∗i is the
optimal number of best influential friends needed whose attentions

from i should be non-zero and whose attentions correspond to the

k∗i smallest values of β i . We will show how the optimal solution

α ∗i can be efficiently found and be incorporated in social recom-

mendation. The following equation can be obtained by squaring

and summing both sides in (12) over all non-zero α ∗i :

∑
α ∗iu >0

(α ∗iu )
2

∥α ∗i ∥
2

2

=
∑

α ∗i >0

(λ − βiu )2 = 1. (14)

Through rewriting (14) in a quadratic form, we have (15):

k∗i λ
2 − 2λ

∑k∗i
u=1

βiu +
(∑k∗i

u=1
β 2

iu − 1
)
= 0. (15)

Thus, λ for user i can be calculated in (16) through solving (15).

We note that we only keep the solution satisfying αiu ≥ 0, ∀u ∈ F (i).

λ =
1

k∗i

( k∗i∑
u=1

βiu +

√√√√(
k∗i +

( k∗i∑
u=1

βiu
)
2

− k∗i

k∗i∑
u=1

β 2

iu

))
. (16)

Therefore given k∗i , the optimal attention α ∗i can be obtained

through substituting the computed value of λ by (16) into (10).

Algorithm 1 presents the details for finding the optimal number k∗i
and optimal attention α ∗i for target user i .

Algorithm 1 Optimal Limited Attention

Require: target user i , i ’s social connections (friends) u ∈ F (i), βiu ∈ R
sorted in ascending order.

Initialization: λ0 = βi ,1 + 1 , k = 0

while λk > βi ,k+1 and k ≤ |F (i) | do
k ← k + 1

λk =
1

k

(
k∑
u=1

βiu +

√√√(
k +

( k∑
u=1

βiu
)
2

− k
k∑
u=1

β 2

iu

))
.

end while
return k and α i

(
whose u-th element αiu =

λk−βiu∑
αiu >0

(λk−βiu )
)
;

Next we incorporate the concept of optimal limited attention

into social recommendation through combining the optimal k∗ and
α ∗ with matrix factorization. Generally, we estimate user i ’s rating
on item j , Ri j , through the dot product of social factor ϕi and item

j’s latent feature vector Vj :

Ri j = ϕTi Vj . (17)

Thus, we keep Ri j and ϕTi Vj close to each other through mini-

mizing the square loss shown in (18):

min

∑M

i=1

∑N

j=1
(Ri j − ϕTi Vj )

2 . (18)

Besides, given the additional social information for user i , we also
hope that Ui is close to ϕi and ϕi in turn is close to

∑
u∈F (i )k∗ αiuUu

as well:

min

∑M

i=1
(Ui − ϕi )T (Ui − ϕi ). (19)

min

∑M

i=1

(
ϕi −

∑
u∈F (i )k∗

α ∗iuUu
)T (

ϕi −
∑

u∈F (i )k∗

α ∗iuUu
)
, (20)

where we denote F (i)k∗ as the set of user i ’s k∗i best influential
friends and α ∗iu as the optimal attention from i to u . Putting (18) (19)
and (20) together, our objective function is:

L = min

[
1

2

∑M

i=1

∑N

j=1
IRi j

(
Ri j − ϕTi Vj

)
2

+
δϕ
2

M∑
i=1

(
ϕi −

∑
u∈F (i )k∗

α ∗iuUu
)T (

ϕi −
∑

u∈F (i )k∗

α ∗iuUu
)

+
δϕ
2

∑M

i=1
(Ui − ϕi )T (Ui − ϕi )

+
δU
2

∑M

i=1
UT
i Ui +

δV
2

∑N

j=1
VT
j Vj

]
, (21)

where

∑
UT
i Ui and

∑
VT
j Vj are regularization terms preventing

overfitting. IRi j is the indicator function that equals to 1 if user i has
rated item j and equals to 0 otherwise. Assuming the optimal k∗i
and attention α ∗iu for user i are known, a local minimum of (21) can

be found by taking the derivative and performing gradient descent

on Ui ,Vj , ϕi separately. The corresponding partial derivatives are
shown as follows:

∂L

∂ϕi
= −

∑N

j=1
IRi j

(
Ri j − ϕTi Vj

)
Vj

+ δϕ
(
ϕi −

∑
u∈F (i )k∗

αiuUj
)
− δϕ (Ui − ϕi ), (22)

∂L

∂Ui
= δϕ (Ui − ϕi ) + δUUi , (23)

∂L

∂Vj
= −

∑M

i=1
IRi j

(
Ri j − ϕTi Vj

)
ϕi + δVVj . (24)

We close this section by presenting the whole picture of our pro-

posed OLA-Rec model. We employ an Expectation-Maximization
(EM) [6] style optimization strategy to alternatively learn the pa-

rameters k ∗, α ∗, ϕ,U ,V that minimize L.
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E-step. In each iteration, the optimal number k ∗ and optimal at-

tention α ∗ for each user are calculated based on the current ϕ and

U through employing Algorithm 1.

M-step. Given the optimal k ∗ and α ∗ obtained from E-step, ϕ ,U ,V
are updated using standard gradient descent:

x (t+1) = x (t ) − η(t ) ·
∂L

∂x
(x (t )), (25)

where η is the learning rate and x ∈ {U ,V , ϕ } denotes anymodel

parameter.

Finally, the whole procedure terminates when the absolute dif-

ference between the losses in two consecutive iterations is less than

10
−5
.

We close this section by pointing out that the concept of lim-

ited attention is a well-studied cognitive factor in social science

which claims only a small portion of information can be processed

in real time by each individual due to her limited mind strength.

People nowadays with online social networks are much easier to

get connected than before, especially for those who are not close

enough to become friends off-line. This results in the problem that

many of our friends on social networks may produce noisy/useless

information. By elegantly introducing the concept of limited at-

tention in social recommendation through a mathematical model

with theoretical analyses, we optimally find a subset of most useful

friends as well as their corresponding attention weights to solve the

above problems simultaneously. In the following section, we will

show that our solution is adequate to help boost recommendation

performance through extensive experiments.

4 EMPIRICAL EVALUATION
In this section, we compare our proposed algorithm (OLA-Rec)

with several state-of-the-art methods on four real-world datasets

to demonstrate the superiority of OLA-Rec model over the others

with respect to various evaluation metrics.

4.1 Experimental Setup
Evaluation Metrics. The following metrics are used to measure

the recommendation accuracy.

• Root Mean Square Error (RMSE).

RMSE =

√∑
i , j (Ri j − R̂i j )2

N
.

• Mean Absolute Error (MAE).

MAE =

∑
i , j |Ri j − R̂i j |

N
,

where Ri j , R̂i j and N are the original rating, predictive rating

and the number of ratings in test set.

• Recall@K . This metric quantifies the fraction of consumed

items that are in the top-K ranking list sorted by their esti-

mated rankings. For each user u we define S (K ;u) as the set
of already-consumed items in the test set that appear in the

top-K list and S (u) as the set of all items consumed by this

user in the test set. Then, we have

Recall@K (u) =
|S (K ;u) |
|S (u) |

.

• Precision@K . This measures the fraction of the top-K items

that are indeed consumed by the user (test set):

Precision@K (u) =
|S (K ;u) |

K
.

Douban CiaoDVD Epinions Flixster
#users 64, 812 480 12, 319 85, 899

#items 56, 005 9, 623 119, 995 48, 602

#ratings 10, 555, 299 17, 684 459, 619 7, 680, 974

#connections 1, 397, 833 9, 451 355, 310 1, 322, 912

Table 1: Summary of datasets

Datasets. Our experiments are performed on four real-world datasets

whose detailed filtering information will be presented in Appen-

dix A. Table 1 gives a summary about their basic statistics.

Comparable Approaches. The following seven recommendation

methods including our proposed OLA-Rec model are compared.

• OLA-Rec. The proposed OLA-Rec model.

• TrustMF. The method capable of handling trust propagation,

originally proposed by Yang et al. [40].

• SoReg. The individual-based regularization model with Pear-

son Correlation Coefficient (PCC) proposed in [20], which

outperforms its other variants.

• SMF. This model [12] assumes that users’ latent feature factors

are dependent on their ties’.

• STE. The model proposed by Ma et al. [18] which aggregates a

user’s own rating and her friends’ ratings to predict the target

user’s final rating on an item.

• SoRec. The probabilistic matrix factorization model proposed

by Ma et al. [19] which factorizes user-item rating matrix and

user-user linkage matrix simultaneously.

• PMF. The classic probabilistic matrix factorization model first

proposed in [23].

4.2 Experimental Results
In Table 2, we show the performances of the above seven compara-

tive models on four datasets, in terms of RMSE, MAE, Precision@5

(Pre@5) and Recall@5 (Rec@5). We conduct paired difference tests

for two ranking metrics, Pre@5 and Rec@5, and ∗ indicates the

significance of testing results at p < 0.05 with degree of freedom as

# users - 1 on each dataset.

RMSE and MAE. As for RMSE and MAE, we observe that social

recommendation models including SoRec, STE, SMF, SoReg and

TrustMF benefit from taking extra social network information into

account and therefore outperform vanilla matrix factorization based

collaborative filtering model such as PMF. This result confirms the

assumption in social recommendation literature that social infor-

mation does help boost the accuracy of traditional recommendation

methods. Besides, we can also observe from Table 2 that our pro-

posed OLA-Rec model clearly beats all other methods on all datasets

for both metrics, demonstrating the advantage of joint optimiza-

tion in learning users’ latent preferences and finding the optimal

number of their best influential social connections as well as ob-

taining the optimal corresponding attentions towards these chosen
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PMF SoRec STE SMF SoReg TrustMF OLA-Rec

Douban
RMSE 0.737926 0.719282 0.716398 0.716762 0.701026 0.720205 0.691787
MAE 0.589502 0.570079 0.564863 0.573150 0.574231 0.567358 0.553230

Rec@5 0.000456 0.001806 0.000633 0.004179 0.004460 0.000562 0.004785 ∗
Pre@5 0.001767 0.009037 0.002864 0.012273 0.014106 0.001908 0.014901 ∗

CiaoDVD
RMSE 1.166616 1.090378 1.089358 1.105861 1.121661 1.089063 1.037851
MAE 0.876568 0.831397 0.835996 0.830795 0.863786 0.830732 0.792926

Rec@5 0.007885 0.002143 0.005151 0.001609 0.004908 0.001290 0.009710 ∗
Pre@5 0.003751 0.002488 0.002934 0.002948 0.003251 0.002043 0.005510 ∗

Epinions
RMSE 1.184620 1.126539 1.120531 1.116998 1.121887 1.138754 1.063084
MAE 0.948665 0.900854 0.883898 0.871509 0.895373 0.879354 0.835751

Rec@5 0.000655 0.002217 0.000770 0.002091 0.001360 0.000601 0.004207 ∗
Pre@5 0.000223 0.001354 0.000664 0.001570 0.001030 0.000567 0.002393 ∗

Flixster
RMSE 1.020013 1.009463 0.974493 0.962956 0.969857 1.002425 0.923399
MAE 0.813994 0.794524 0.773342 0.768965 0.771018 0.790036 0.739452

Rec@5 0.034244 0.000951 0.001236 0.003093 0.016525 0.003579 0.033312

Pre@5 0.023560 0.005045 0.011332 0.008725 0.022068 0.005647 0.035993 ∗
Table 2: Perfermances of comparative algorithms in terms of RMSE, MAE, Rec@5 and Pre@5 on different datasets (boldface
font denotes the winner in that row).
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Figure 1: Precision@K vs Recall@K, where K ranges from 5 to 50

social connections. We note that due to the randomness in data

splitting, model initialization and even data preprocessing, our re-

sults for some baselines may not be exactly the same as reported in

the original works, though given our best efforts to diminish the

variances.

Pre@5 and Rec@5. As for Pre@5 and Rec@5, we observe from

Table 2 that our proposed OLA-Rec model significantly outper-

forms several baselines on almost every dataset, demonstrating

its superiority over other state-of-the-art methods. For instance,

the performance of OLA-Rec is roughly 9 times and 7 times better

than PMF in terms of Rec@5 and Pre@5 on Douban, 6 times better

and 3 times better than TrustMF in terms of Rec@5 and Pre@5 on

Epinions.

Precision v.s. Recall. In Figure 1, we draw the Precision (Y -axis)
vs. Recall (X -axis) curves of all seven recommendation methods

for comparison. Data points from left to right on each line were

calculated at different values of K , ranging from 5 to 50. The closer

the line is to the top right corner, the better the algorithm is, in-

dicating that both precision and recall are high. We observe from

Figure 1 that OLA-Rec with no doubt achieves better performances

than all other methods. Further, Figure 1 also confirms the trade-off

between precision and recall —- as K increases, precision tends to

go down while recall moves toward the opposite direction.

Impact of LC Ratio. We next discuss the impact of LC ratio (LC =
L/C) in (9) on the performances of OLA-Rec. We can tell that LC
controls the value of βiu in (9), which in turn affects the calculation

of λ in (16) and therefore indirectly influences the value of k . When

quite a small LC is adopted, k tends to be very large, indicating

that information from a large number of the target user’s friends

(all of her friends in the extreme case) is considered to infer the

target user’s preference. Extremely, we may simply take every

friend of the target user into account, ignoring the factor of limited

attention. When LC is very large, the target user’s taste will merely

depend on very few friends (none of her friends in the extreme

case). Figure 2 displays the performances of OLA-Rec with different

LC ratio values. We observe that for all of the four datasets, as

LC increases, RMSE and MAE first decrease (prediction accuracy

increases) and then increase (prediction accuracy decreases) after

LC goes beyond a certain threshold whose value is 100 for Douban,

CiaoDVD, Epinions and 10 for Flixster. This confirms our intuition

that by finding an optimal number of best influential friends for

each user and learning their optimal attentions received from the

target user, OLA-Rec is able to achieve a performance boost over

models purely utilizing information from every friend without

considering limited attention andmodels simply ignoring any social

information.

Histograms on k∗
n . It is obvious that the upper bound of k∗i is |F (i) |

which is the size of user i ’s total social connections. Therefore it
is worth comparing the optimal number of selected social ties (de-

noted as k∗) with the exact number of total social ties (denoted as

n) in the experiments. Figure 3 presents the histograms over
k∗
n for

users on each dataset. We observe a skewed distribution on each

of the four datasets, showing that the majority of the population
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Figure 2: Impact of different LC ratio values in OLA-Rec on RMSE and MAE for all four datasets
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Figure 3: Histograms of users over k∗
n (horizontal axis) on all four datasets
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Figure 4: Histograms of users over number of total social connections (horizontal axis) on all four datasets

select between 70% and 100% of their social connections as social

information sources. Furthermore, the histograms over total num-

ber of social connections are given in Figure 4, demonstrating a

skewed distribution on each dataset as well. The combination of

Figure 3 and Figure 4 provides us with two indications:

(1) Most users in practice only need social information from a

subset of their total social connections (i.e.,
k∗
n < 1) when

making recommendations to them.

(2) Users with a larger number of social connections tend to

have a smaller
k∗
n and vice versa. This actually makes sense

because having a large number of social connections may

produce noisy information that has negative impact on in-

ferring the preferences of these target users.

We remark that it is possible to use all the social connections

when necessary, which actually is not a ”bad” choice. The contribu-

tion of our work is that for each user we can find an optimal subset

(size k∗ ∈ [1, n], with theoretical guarantee) of her social ties who

contribute in affecting her preference without any useful social

information loss through an elegant combination of motivation

from social science and formulation from math. In fact,our model is

expected to reduce useless/noisy social information when k∗ < n,
which happens for over 80% of the users having more than 15 social

ties.

Cold Start Problem. Last but not least, we drill down to the per-

formances of different algorithms on cold-start users. As is common

practice, we define users rating less than five items as cold-start

users. Figure 5 depicts the performances of various methods on cold

start users. Our observations that social recommendation meth-

ods (including SoRec, STE, SMF, SoReg, TrustMF and OLA-Rec)

significantly outperform PMF (a non-social algorithm) in terms of

both MAE and RMSE in Figure 5 confirm the fact that social recom-

mendation methods are superior to their non-social competitors

particularly for cold-start users. We also observe that our OLA-Rec

model have similar accuracies in terms of both MAE and RMSE to

the other social recommendation baselines. This may due to the

reason that when the target user processes a very small number of

social connections, the diversity of these social ties reduces dramat-

ically, making the proposed OLA-Rec model simply take all social

connections into account to obtain as much useful information as

possible. In this case, given exactly the same amount of social in-

formation shared by all social recommendation methods, the credit

of slightly better performances obtained by OLA-Rec may go to

learning the optimal attentions (i.e., α ∗i ) for each target user i .

5 CONCLUSIONS
Limited attention is very important to social recommendation as

it has been proved to have significant impact on users’ online be-

haviours. Therefore, we propose to incorporate limited attention, a

well-studied social science notion into social recommendation in an

appropriate way. We first formulate the optimal limited attention

problem, aiming to optimally bring the concept of limited attention

into social recommendation. Then we develop a novel model which

efficiently finds an optimal number of friends whose preferences

have the best impact on the target user and adaptively learns an
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Figure 5: Performances of seven methods on cold start users in terms of MAE and RMSE for all four datasets

optimal personalized attention towards every selected friend, as

well as the latent preference for each user. We also provide a proof

on the optimality of the proposed algorithm. Extensive experiments

on four real-world datasets demonstrate the improvement of our

proposed method over existing approaches.
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A SUPPLEMENT
Datasets.
• Douban. This is a public dataset from a Chinese movie forum

(http://movie.douban.com/), containing user-user friendships

and user-movie ratings, and is publicly available from (https:

//www.cse.cuhk.edu.hk/irwin.king.new/pub/data/douban).

• CiaoDVD.The trust relationships among users fromCiaoDVD

as well as their ratings on DVDs are included. It was crawled

from the entire category of DVDs of a UK DVD community

website (http://dvd.ciao.co.uk) in December, 2013.

• Epinions. This dataset comes from an American website

and consists of trust relationships and user-item ratings.

This dataset (http://www.trustlet.org/wiki/Epinions_dataset)

is extracted from the consumer review website Epinions

(http://www.epinions.com/), which contains user-user trust

relationships and numerical ratings.

• Flixster.This dataset (http://www.cs.ubc.ca/~jamalim/datasets/)

contains the information of user-movie ratings as well as

user-user friendships from Flixster, anAmerican social movie

site for discovering new movies (http://www.flixster.com/).

We remove users with less than 2 ratings and select 80% of each

user’s ratings at random for training, leaving the remainder as test

set.

B PROOF OF EQUATION (7)
Theorem B.1. (Hoeffding’s Inequality). Let {x j }nj=1 ∈ [Lj ,Uj ]

n

be a sequence of independent random variables, such that E[x j ] = µ j .
Then, it holds that:

P
(��� n∑
j=1

x j −
n∑
j=1

µ j

��� ≥ x
)
≤ 2e

− 2x2∑n
j=1(Uj −Lj )

2

.

Wewant to prove that by Hoeffding’s inequality, with probability

at least 1 − δ , we have :���∑
j ∈F (i)

αi jϵj

��� ≤ C ∥α i ∥2, s .t . C = b ×

√
(2loд(

2

δ
)), (26)

where |ϵj | ≤ b for some b ≥ 0 and E[ϵj ] = 0. We further constrain

αi j ≥ 0 and

∑ |F (i) |
j=1 αi j = 1.

Proof. Given x j = αi jϵj , we have:

µ j = E[x j ] = E[αi jϵj ] = E[αi j ]E[ϵj ] = 0. (27)

and thus:

P
(��� n∑
j=1

x j

��� ≥ x
)
≤ 2e

− 2x2∑n
j=1(Uj −Lj )

2

. (28)

Let n = |F (i)| and x = C ∥α i ∥2, we have:

P
(���∑

j ∈F (i)
αi jϵj

��� ≥ C ∥α i ∥2

)
≤ 2e

−
2C2 ∥α i ∥

2

2∑n
j=1(Uj −Lj )

2

= 2e
−

2∗b2∗2loд( 2δ )∥α i ∥
2

2∑n
j=1(Uj −Lj )

2

. (29)

Recall that −b ≤ ϵj ≤ b and therefore Lj = −b ∗ αi j and Uj =

b ∗ αi j . Thus we have:

n∑
j=1
(Uj − Lj )

2 =

n∑
j=1

4b2αi j = 4b2∥α i ∥
2

2
. (30)

Substitute Eq (30) into Eq (29), we have:

P
(���∑

j ∈F (i)
αi jϵj

��� ≥ C ∥α i ∥2

)
≤ 2(

δ

2

)

4b2 ∥α i ∥
2

2∑n
j=1(Uj −Lj )

2

= 2 ∗
δ

2

= δ . (31)

By rewriting Eq (31), we finally get:

P
(���∑

j ∈F (i)
αi jϵj

��� ≤ C ∥α i ∥2

)
≥ 1 − δ , (32)

which completes the proof.
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